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Introduction

Radio frequency interference (RFI) is a problem for microwave remote sensing of Earth.

Although frequency allocations are set aside for passive sensing, RFI can still degrade

measurement quality. In some cases radiometer bandwidth exceeds allocated

spectrum to reduce measurement uncertainty or spectrum allocations are shared,

forcing microwave radiometer to co-exist with terrestrial sources. Low level RFI is

particularly detrimental as it can be concealed as natural variability leading to flawed

scientific results. RFI detection algorithms have been developed to address the

problem. Research into other algorithms is needed to improve upon the sensitivity of

existing detection algorithms to various types of RFI. The Sparse Component Analysis

(SCA) has been investigated to determine its sensitivity to continuous wave (CW) RFI.
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SCA is a blind source separation method which seeks to extract N unknown sources 

from P observations where P < N.  The sources need to have disjoint supports.
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Algorithms

• Dictionary
• Dictionary learning

• Structured dictionary

• Joint sparse representation
• Global optimization

• Greedy algorithm

• Mixing matrix estimation
• Global clustering 

• Local scatter plots 

• Separation
• Binary masking

Represent each source by a linear combination of a few elementary signals (atoms):  

𝑠 𝑡 =  𝑘=1
𝐾 𝑐𝑠 𝑘 𝜑𝑘 𝑡

Measure of sparsity

𝒄𝑠 𝜏 =   𝑘=1
𝐾 |𝑐𝑠 𝑘 |𝜏

1/𝜏
𝜏 > 0

num of nonzero coefficients 𝜏 = 0
quantifies the sparsity of 𝒄𝑠

Ideal 𝜏 for sparsity is 0

Dictionary

Dictionary: set of elementary signals known as atoms 𝚽
Consider dictionaries that span 𝐶𝑇 , 𝐾 > 𝑇: redundant dictionary, infinite 

representation

Once the dictionary is determined the signal representation can be determined in 

the transformed domain using either a global optimization technique or greedy 

algorithms. 

Let 𝐾, denote the number of atoms in the dictionary,𝜱.  If the signal in time domain 

is 𝒙 and the signal coefficients in the transformed domain is 𝒄𝒙,  then

• Binary masking is used to separate the sources. 

• A mask is derived by setting the indices of the sources which correspond to the 

highest amplitude in observations given the mixing matrix with a value of one.  

• Since the signals are disjoint, only the active sources are assigned a coefficient 

value, while the other sources are masked with zeroes.  

• In the last step, the acquired source signals can be reconstructed back to their 

original domain by using 𝒙 = 𝜱𝒄𝒙.

• Monte Carlo simulations with 1000 time samples are used, along with the 

structured dictionary and Orthogonal matching pursuit (OMP) algorithm for joint 

sparse representation, the weighted histogram for matrix estimation and binary 

masking for source separation.

• Figure shows the performance results of SCA for detection of CW RFI with INRH

ranging from -15 dB to 2.5 dB.

• The results show perfect to near perfect detection for INRs greater than -12.5 dB 

and very good detection at -12.5 dB and -15 dB.

• Results show that detection works for relatively large INRs for CW RFI.  
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• Each source is transformed to a sparse

representation in another domain.

• Mixing matrix 𝑨 is estimated using the sparse

coefficients obtained in the transformation.

• The sources are separated in the transformed

domain using the coefficients of observations and

the estimated mixing matrix 𝑨.

• The sources are finally reconstructed in the time

domain.

In practice the source signals are not

disjoint in time. Columns of A not easily

determined from scatter plot
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SCA in Practice

Sparse Component Analysis (SCA)
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Separation and Reconstruction

𝒙 = 𝜱𝒄𝒙

where 𝒙 = 𝑥 1 ,… , 𝑥 𝑡 𝑇 and 𝒄𝒙 = 𝑐𝑥 1 ,… , 𝑐𝑥 𝐾 𝑇.

𝒄𝒙 = arg min
𝒙=𝚽𝒄𝒙

𝒄𝒙 1
Sparse Representation 

of sources mixture

Separation

Coefficients of sources

Source 1 Source 2

S1 actual

S1 

reconstructed

S2 actual

S2 

reconstructed

• The mixing matrix 𝑨 is estimated through the scatter plot of the coefficients 𝒄𝑥.

• A global clustering algorithm, weighted histogram, is used to estimate the 

directions of the columns of the mixing matrix.

Estimating Mixing Matrix

Scatter plot of 

coefficients 𝒄𝑥

• The detection criterion is the median of the absolute value of the reconstructed 

sources,  𝑥 in time.  

• The output of SCA are three reconstructed sources in time,  𝑠1 𝑡 ,  𝑠2 𝑡 ,  𝑠3(𝑡) where 

t = 1, 2, 3 … N.  

• The median of the absolute value of each reconstructed source 

(𝑚𝑒𝑑𝑖𝑎𝑛  𝑠𝑛 𝑡 , 𝑛 = 1, 2, 3) is evaluated. If all medians are greater than a given 

threshold, RFI is present.
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